
november 2012 | vol. 55 | no. 11 | communications of the acm 89

doi:10.1145/2366316.2366338

ing real-time processing and viewing
algorithms. The following article by
Adams et al. is the first to address this
problem, and it does so in a beautiful
and elegant fashion.

The need for real-time processing
and immediate feedback requires cam-
eras to perform many different tasks in
parallel. For example, cameras need to
determine the optimal exposure time,
aperture, analog gain, and focus set-
tings for each picture.

Coming up with an elegant, pro-
grammable architecture and the APIs
that support the deployment of sophis-
ticated computational photography al-
gorithms is a challenging architectural
design problem. The authors show
that in order to achieve this, the archi-
tecture must allow the specification of
parameter sets (called shots) that con-
trol (or suggest) how individual images
should be taken.

Because setting up these param-
eters can take time, the architecture
keeps the desired and actual param-
eters tightly coupled with raw (unpro-
cessed) images returned to the image
processor. The complete architecture
proposed in the paper therefore con-
sists of shots (desired parameter sets),
sensors that capture either individual,
burst, or continuous streams of shots,
frames that return the captured imag-
es and metadata, and devices such as
lenses and flash units that can be con-
trolled by the program.

To demonstrate the utility and gen-
erality of their approach, the authors
built a custom-made experimental
Frankencamera from commercial im-
aging parts and also reprogrammed an
existing Nokia N900 smartphone. They
then developed a collection of useful
and compelling computational pho-
tography algorithms.

Since its original publication at
SIGGRAPH 2010, the Frankencam-
era paper and associated hardware/
firmware systems have had a dramatic
impact on computational photogra-

Computation a l photog raphy is an
emerging discipline that enables the
creation of enhanced-quality photo-
graphs through novel combinations of
digital images, algorithms, optics, and
sensors.2,5 The field lies at the intersec-
tion of image processing, computer vi-
sion, and computer graphics, and has
spawned its own workshops and con-
ferences. It has also engendered many
new features used in digital cameras
and smartphones.

While scientists have applied im-
age analysis and enhancement tech-
niques to images for decades, the ap-
plication of sophisticated algorithms
to consumer photography started in
the mid-1990s. Early examples of such
algorithms include stitching multiple
images into seamless panoramas,
merging multiple exposures to create
and display high dynamic range (HDR)
images, and combining flash and no-
flash images to provide better details in
dark regions without harsh shadows.

As with most of computing, compu-
tational photography algorithms were
originally developed and deployed on
professional workstations and desktop
personal computers. Unfortunately,
the inability to deploy these algorithms
inside cameras has severely limited
real-world experimental validation and
the percolation of these scientific ad-
vances into consumer products.

The migration of these algorithms
into hardware and firmware has been
hampered by a number of factors.1
For example, digital image processing
algorithms used by cameras are pro-
tected by patents and trade secrets.
Vendors also tightly control the user ex-
perience, rather than taking the more
open approach embraced by the app
development community.

An even more fundamental im-
pediment to the widespread develop-
ment and deployment of in-camera
algorithms is the lack of a clean open
architecture for controlling camera
features and writing the correspond-

phy research and teaching, as well as
consumer-level photography devices.
The Frankencamera devices and soft-
ware have been used in the Stanford
CS 448A course on Computational
Photography4 as well as computational
photography courses at other universi-
ties. Numerous computational pho-
tography apps can now be found for
smartphones, and ideas inspired by
the paper are also being incorporated
into upcoming versions of smart-
phone operating systems and libraries.

One additional ingredient needed
to make computational photography
algorithms easy to develop is a high-
level language and compiler tailored
to such programs. Fortunately, a SIG-
GRAPH 2012 paper describing a sys-
tem called Halide promises to do just
that by enabling programmers to write
high-level array-like descriptions of al-
gorithms and then giving hints to the
compiler about the desired levels of
tile-based caching, parallelism, pipe-
lining and reuse.3

Computational photography is blos-
soming as both a research field and a
vibrant application area affecting all
aspects of digital photography. The fol-
lowing paper provides an elegant exam-
ple of how well-designed architectures
in computer science can facilitate and
accelerate the adoption of new tech-
nologies and expose novel capabilities
to new generations of students.	

References
1.	L evoy, M. Experimental platforms for computational

photography. IEEE Computer Graphics and
Applications 30, 5 (2010), 81–87.

2.	N ayar, S. K. Computational cameras: Redefining the
image. Computer 39, 8, (2006), 30–38.

3.	R agan-Kelley, J., Adams, A., Paris, S., Levoy, M., and
Amarasinghe, and Durand, F. Decoupling algorithms
from schedules for easy optimization of image
processing pipelines. ACM Transactions on Graphics
31, 4 (2012).

4.	S tanford CS 448A: Computational Photography;
http://graphics.stanford.edu/courses/cs448a-10/.

5.	S zeliski, R. Computer Vision—Algorithms and
Applications. Springer. 2010.

Richard Szeliski (szeliski@microsoft.com) is a
distinguished scientist at Microsoft Research, Redmond, WA.

© 2012 ACM 0001-0782/12/11 $15.00

Technical Perspective
Open Platforms for
Computational Photography
By Richard Szeliski

