
JANUARY 2018 | VOL. 61 | NO. 1 | COMMUNICATIONS OF THE ACM 105

DOI:10.1145/3150215

To view the accompanying paper,
visit doi.acm.org/10.1145/3150211 rh

Ultimately, the work on Halide com-
bines conceptual insight with the en-
gineering prowess required to turn this
insight into a distinct improvement for
realistic applications. In this context, it
is important to recognize that Halide
started with a tight focus on a specific
application area, namely image pro-
cessing. While the concepts underly-
ing Halide are more general, the tight
domain focus has led to convincing
applications—for example, Halide is
used in Google’s Pixel phone, Google
Photos, and YouTube.

Looking ahead, the core question is
to what extent Halide’s approach can
be generalized to applications outside
of image processing and, more broad-
ly, how Halide’s programming model
can be generalized. At its core, image
processing is a subdomain of array
programming. This provides a natural
progression for Halide’s approach to
grow into other domains. First steps
in this direction have been undertaken
by successfully applying Halide, as is,
to algorithms from linear algebra and
machine learning. More challenging
will be to extend the expressiveness
of Halide to cover a broader range of
computational forms than currently
supported by its algorithmic language,
while retaining the clear separation of
algorithmic code from the execution
schedule.

In addition to generalizing the ap-
plication domain, a second question
is the complexity of developing execu-
tion schedules. The authors note that,
even in the current context, complex
schedules require expert knowledge.
While this is hardly surprising, as con-
ventional high-performance optimiza-
tion requires experts as well, machine
support is a tantalizing option. The
authors have begun to study this, but
many questions remain.	

Manuel Chakravarty is a functional programming
evangelist at Tweag I/O, Paris, France.

Copyright held by author.

THE D E V E LOPM E N T OF high-perfor-
mance software has always suffered
from a tension between achieving
high performance on the one hand
and portability and simplicity on the
other hand. By specializing an algo-
rithm for optimal performance, con-
sidering the memory hierarchy and
other architectural particulars, we in-
troduce architecture-specific detail.
This obscures algorithmic structure
and conflates the general with the spe-
cific, compromising simplicity and
clarity. It also hurts portability to all
but very similar architectures—sim-
ple changes, such as different cache
sizes, can have substantial perfor-
mance implications. Moreover, dis-
tinctly different architectures, such as
CPUs versus GPUs versus DSPs, often
require fundamentally different opti-
mization strategies. As a result, high-
performance code is difficult to write,
debug, maintain, and port.

Numerous research efforts were
aimed at addressing this issue by ap-
plying automatic code transforma-
tions and other forms of compiler opti-
mizations. Ultimately, we would prefer
the software developer simply code the
algorithm and leave it to the machine
to specialize that algorithm to any par-
ticular architecture for efficient execu-
tion. In this ideal world, portability is a
matter of retargeting a compiler’s op-
timization engine. Unfortunately, ar-
chitectural complexity and the lack of
architectural models that are simulta-
neously sufficiently detailed and trac-
table have prevented us from realizing
this vision.

The following work by Ragan-Kelley
et al. on the image processing language
Halide explores a substantially differ-
ent approach to architecture-specific
code optimization. By shifting our per-
spective on how to express architec-
tural constraints and how to generate
high-performance code, it achieves the
impressive feat of simplifying high-
performance code, while at the same

time improving both portability and
performance beyond that of traditional
complex and non-portable approach-
es. This threefold success is indicative
of a qualitative breakthrough, a defini-
tive step forward in the state of the art.

Key to the authors’ approach is the
strict separation of the algorithmic
code from an explicit specification of
how to optimize that code for a given
architecture. This specification, which
they call the execution schedule, deter-
mines evaluation order, the amount of
inlining, storage of intermediate data
structures, and the choice between
caching versus recomputation. With
all the details of execution separated
out, the remaining algorithmic code is
purely functional.

This idea of separating the algorith-
mic code from the details of how to
specialize that code for a specific archi-
tecture has been put forward before—
for example, in the work on algorith-
mic skeletons. However, previous work
lacks the clarity and simplicity of Ha-
lide and has failed to provide practical
benefits at the scale of Halide. Its ex-
traordinary success is due to the choice
of the architectural specifics included
in the schedule together with the spe-
cific optimization and code-generation
technology informed by the schedule.

Technical Perspective
Can High Performance
Be Portable?
By Manuel Chakravarty

The following
work on the image
processing language
Halide explores
a substantially
different approach to
architecture-specific
code optimization.

http://dx.doi.org/10.1145/3150215
http://doi.acm.org/10.1145/3150211

