
Computer Graphics Volume 15, Number 3 August 1981

MERGING AND TRANSFORMATION OF RASTER IMAGES
FOR CARTOON ANIMATION

Bruce A. Wallace

Program of Computer Graphics
Cornell University

Abstract

The task of assembling drawings and backgrounds together for each frame of
an animated sequence has always been a tedious undertaking using conventional
animation camera stands and has contributed to the high cost of animation
production. In addition, the physical limitations that these camera stands
place on the manipulation of the individual artwork levels restricts the total
image-making possibilities afforded by traditional cartoon animation. Documents
containing all frame assembly information must also be maintained.

This paper presents several
production of cartoon animation,
overall quality.

computer methods for assisting in the
both to reduce expense and to improve the

Merging is the process of combining levels of artwork into a final
composite frame using digital computer graphics. The term "level" refers to a
single painted drawing (cel) or background. A method for the simulation of any
hypothetical animation camera set-up is introduced. A technique is presented
for reducing the total number of merges by retaining merged groups consisting of
individual levels which do not change over successive frames. Lastly, a
sequence-editing system which controls precise definition of an animated
sequence, is described. Also discussed is the actual method for merging any two
adjacent levels and several computational and storage optimizations to speed the
process.

KEYWORDS: computer animation, computer graphics, merging, transformation
COMPUTER REVIEWS CLASSIFICATION: 3.41, 8.2

Introduction

The production of cartoon animatio~
has always been a large-scale undertaking
involving many man-hours of drawing, inking
(or xeroxing), cel painting, background
painting, and frame-by-frame film recording
using an animation camera stand. The
traditional cartoon animation process takes
the following steps from the original
storyboard to the finished product:

(i) Cartoon characters are drawn in pencil
on separate sheets of white paper. A new
and different drawing is made each time a
change is to occur in the appearance of
that character.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1981 ACM O-8971-045-1/81-0800-0253 $00.75

(2) Backgrounds which illustrate the
settings into which a character is placed
are painted on cardboard sheets.

~ 3) A tabular exposure shee t is written to
irect the final assembly of cels and

backgrounds and to specify how the camera
stand should be configured for each frame.

(4) Each pencil drawing is either traced
in ink or xeroxed onto the face of a clear
sheet of acetate known as a cel. At this
point, only a black line drawing appears on
an otherwise transparent sheet of acetate.

(5) The various areas of each transparent
cel which are to appear as color are
painted with an opaque paint, similar to
coloring inside the lines of a child's
coloring book. The painting is done on the
reverse side of.the cel so that none of the
black lines on the face are obliterated.

(6) Using the exposure sheet as a guide,
the specified background and overlaying
cel(s) are placed on the base of the camera
stand. The lateral position of the base is

253

Computer Graphics Volume 15, Number 3 August 1981

a~justed depending upon the desired
position of the characters and the
background. Generally, the cels and
background can be moved independently. The
camera is raised or lowered on its vertical
support until the desired scaling of the
combined image is achieved. It is not
possible to enlarge levels of artwork
independently without the use of an
expensive multi-plane animation camera
stand such as the one introduced by Walt
Disney in 1936. The aperture on the camera
lens can be varied depending upon the
desired brightness of the frame. When
these physical processes are complete, a
single frame of animation is recorded onto
film with the open and close of the camera
shutter.

A review of Madsen's book "Animated
Fil~:Concepts,Methods,Uses" [5] is
beneficial in understanding in greater
detail how the traditional animation
process operates.

In recent years several
computer-assisted cartoon animation systems
have been developed, primarily for the
purpose of quickening and improving various
stages of the animation process. Two such
systems, one at Cornell University and the
other at New York Institute of Technology,
along with several other installations,
have shown cost savings and greater
flexibility over traditional cartoon
animation methods.

In each of these systems, drawings are
maintained either in vector format as
streams of connected vertices, or in raster
format as areas of pixel data. Advantages
and disadvantages of the two approaches are
discussed by Levoy [3]. This paper will
assume the raster format in all further
discussion. Methods for computer
assistance in steps 4 - 6 of the animation
process have been developed for each
system. Brief descriptions of
computer-assisted cel creation and coloring
processes (steps 4 & 5) are followed by
computer methods for assisting in the final
camera work (step 6).

A. Computer-Assistance in the Cel
Coloring Process (Step 5)

The time required for cel coloring has
been reduced tenfold through the use of
area flooding algorithms such as those
introduced by Smith [6] and Levoy [3].
Such algorithms process the pixels of a
raster image directly. An enclosed area of
the image is quickly flooded with color
simply by indicating one "seed" pixel
within that area. Each color has an
opacity value associated with it which
refers to the extent with which that color
obscures whatever is behind it. This value
is used in the process of overlaying
images, discussed later in this paper.

Area flooding algorithms lay at the

heart of all cel opaquing programs.
Because of the great time savings such a
program offers to the animation process, it
has been the major inspiration for
incorporating computers for production
assistance.

B. Computer-Assistance in the
Drawing-to-Cel Process (Step 4)

An opaquing program operates on raster
data. This means the animators' drawings
must be entered into the computer in pixel
format to correctly interface with such a
program.

Typically, in a raster-based,
computer-assisted animation system, a
drawing is input as pixel data by using a
video scanning camera connected to a
digital frame buffer. One such
implementation is discussed by Stern [7].
The contents of the frame buffer can be
manipulated by an opaquing program, such as
the one mentioned above.

Much like the drawings, conventionally
painted backgrounds can be input by
scanning with the same type of video
camera. Three separate passes are made
using optical color filters (red, green,
blue). Each pixel of the background image
is stored as an RGB triplet. All pixels
within a background are assumed to be fully
opaque.

C. Computer-Assistance in the
Frame Assembly Process (Step 6)

All of the computer-assisted processes
discussed above deal with the alteration or
creation of individual pieces of artwork.
Traditionally, these levels have been
assembled into a final composite frame on a
standard animation camera stand. However,
since cels and backgrounds are maintained
in the computer in raster format, a method
is necessary for performing the task of
building the final frames of animation from
the pixel data.

Merging is the process of combining
pixel-based artwork into a final display
frame using digital computer graphics.
Building a frame of animation on a
traditional animation camera stand can be
simulated on a computer. The pixel-based
artwork is assembled and transformed into a
final raster image. Methods for this
simulation process will be the discussed in
detail later in this paper. Once computed,
the final image can either be written to a
frame buffer and output onto videotape or
recorded directly onto film using a
precision film recorder.

There are several advantages for using
a computer to assist in this step of the
animation process in this manner:

(i) The allowable number of cel levels is
no longer limited by the physical density

254

Computer Graphics Volume 15, Number 3 August 1981

of the acetate on which it is normally
painted. The bottom level of artwork in a
computer merged frame is as bright as all
the levels above it.

(2) The physical limitations of the camera
stand, which have restricted the
independent manipulation of each artwork
level, are no longer present. Levels may
be transformed to simulate any hypothetical
camera stand, including the multi-plane
camera.

Merging Two Artwork Levels

A. Image Data (Artwork)

The majority of artwork processed by
computer consists of "cels" colored by an
opaquing program. Backgrounds, input by
the three-pass scanning method, previously
discussed, comprise the remainder of raster
data used in producing an animated
sequence. Each pixel of an artwork level
is comprised of three color components
(Red, Green, Blue) and an opacity value.
The opacity refers to the percentage
contribution of the pixel's own color
versus whatever artwork is on the next
lower level. While all pixels in a
background are fully opaque, pixels in cels
assume one of three states:

i) Fully Opaque: OPACITY(PIXEL)=I

This occurs in all colored areas.

2) Fully Transparent: OPACITY(PIXEL)=0

This occurs in all areas void of color.

3) Partially Opaque: 0 < OPACITY(PIXEL) < 1

This occurs at the edges between opaque and
adjacent transparent areas, producing soft,
anti-aliased edges.

B. The Merging Process

Merging multiple levels of pixel-based
artwork for cartoon animation can be
thought of in terms of a Z-buffer
algorithm. Typically, a Z-buffer algorithm
is used for hidden surface removal of
polygonal data. It determines what
portions of each polygon are ultimately
visible in the final raster display. A
merging algorithm determines what portions
of each level of artwork are ultimately
visible in the final frame. Because a
Z-buffer algorithm only considers each
level once, an increase in the number of
levels produces a linear increase in the
time required to build a final display
image. However, a Z-buffer algorithm can
not offer one necessary feature desirable
in a merging algorithm: acceptable
anti-aliasing along edges. There are two
cases where adverse effects can occur:

(i) Catmull [i] has pointed out that
Z-buffer algorithms do not produce

correctly anti-aliased edges in a raster
image. Only pixel percentage clipping,
using precise edge information, generates
the correct anti-aliasing of edges in all
cases. Without the edge information,
slightly incorrect results will occur when
overlap occurs between two or more pixels
through which edges pass. This occurs when
combining levels of scanned data, because
the scanning process does not yield precise
edge information. Incorrect results are
more noticeable in applications where a
Z-buffer algorithm is typically used than
in cartoon animation produced by a merging

algorithm. In the case of polygonal data,
many edges may overlap. Unfortunately, as
the number of overlapping edges increases,
so does the error. Since many of these
images are animated slowly, such errors are
easily detected. This is not true in
cartoon animation. The number of edges
that actually overlap are minimal since the
number of artwork levels is much less than
the number of overlapping polygons found in
a typical image produced by a Z-buffer
algorithm. More importantly, frame to
frame motion in cartoon animation is
typically quick and tends to hide slightly
incorrect color at intersecting
anti-aliased edges. For these reasons, the
results, while not perfect, are more than
adequate for cartoon animation.

(2) It has also been pointed out that a
Z-buffer algorithm will produce
inconsistent results at the edges if the
order in which levels are pairwise combined
is not bottom-up. This is due to the fact
that the calculations involved in the
Z-buffer algorithm are not associative.
The option of merging levels of artwork,
independent of the order in which the
merges occur, is desirable in a
computer-assisted animation system.
Frequently, groups of adjacent levels of
artwork will not change from one frame to
another. It would be advantageous to be
able to merge these levels together and
keep the resultant for use in subsequent
frames. This reduces the total number of
merges which have to be performed for an
animated sequence. Due to the nature of
the animation, the order by which groupings
of adjacent levels are merged and retained
may not necessarily be bottom-up. Thus,
the need to be able to assemble the final
image in any order becomes important. An
order-independent merging method has been
developed which does not require the strict
bottom-up merging order by which levels are
paired and merged into intermediary images.
It eliminates this restriction, producing
no adverse effects in the anti-aliased
edges caused by variations in the order by
which merges between levels occur.

Before presenting the method for
order-independent merging, the basic logic
for a simple merging process must be
presented. This closely parallels the
logic used in a Z-buffer algorithm. Only
two levels are merged at any one time,

255

Computer Graphics Volume 15, Number 3 August 1981

forming a resultant level with its own
color and opacity components, which can in
turn be merged with any other existing
level. The calculations for resultant
pixels along the edges have been included.
The formulations in the simple procesS rely
upon order dependence for correct results.
Levels are merged in order from the
background upwards. Since the background
is known to be fully opaque, the opacity of
the pixel resulting from each merge
operation is equal to I. Thus, a merge is
always between a fully opaque bottom level
and a top level assuming any of the three
opacity states outlined previously. To
produce the merged pixel, RESULT, from the
two adjacent level pixels, TOP and BOTTOM,
the following algorithm is performed:

Case 1 if OPACITY(TOP) = 1 then

COLOR(RESULT) = COLOR(TOP)

If top is fully opaque
result assumes top color

else
Case 2 if OPACITY(TOP) = 0 then

COLOR(RESULT) = COLOR(BOTTOM)

If top is transparent
result assumes bottom color

Case 3 else

COLOR(RESULT) =
{OPACITY(TOP) * COLOR (TOP)} +
{{I - OPACITY(TOP)} * COLOR(BOTTOM)}

If top is partially opaque
result assumes interpolant
between top and bottom colors
regulated by the top opacity

fi

The term "COLOR" refers to one of the
three color components found at the pixel,
either red, green, or blue. The algorithm
is executed once for each component.

The bottom-up method always involves
building an image which contains all
artwork from the background up to and
including some overlaying cel. In the case
of order independence, the process of
assembling a final raster image is
mathematically associative. This is true,
because the act of cummulatively combining
levels of given color and opacity is an
additive process. A physical model which
has these same properties has been
constructed to clarify the formulas
necessary for calculating a resultant
pixel's color and opacity values from the
known color and opacity values of two cel
pixels which are being merged together:

A pixel can be thought of in terms of
the physical analogy of a homogeneous
screen of a given density. A given
percentage of the area contributes the

color of the screen material to the overall
appearance of the screen. This percentage
will be referred to as the "reflectance".
The remaining percentage of the area is
contributed from levels below. This will
be referred to as the "tranmittance".

t REFLECTANCE (% of plxel area oeaupled
by the screen)

x l "~" --:~-?~-'--"--~---;;~"

~ ~ ~NsM~cE(~ofplx.l t
occupied by the--screen)

REFLECTANCE = 1 - TRANSMITTANCE
for 0 <= REFLECTANCE <= 1

Figure 1 - Screen Model of Pixel

The use of the terms "reflectance" and
"transmittance" should not be mistaken for
those found in discussions of optics and
ray tracing. The two terms assist in
conceptualizing the derivation of the final
formulas.

Overlaying any two pixels, each with
its own opacity (or "reflectance") values,
can be thought of as overlaying two screens
of given density and color with a spatial
integrator (diffuser) of 100% transmittance
between them. A new interpolated color and
resultant "reflectance" of this combination
can be obtained from the original known
densities and colors of the two screens.

Using the following symbols, Figure 2
aids in deriving formulas for calculating
the resultant components:

CT = Color value for top pixel
CB = Color value for bottom pixel
CR = Color value for resultant pixel

RT = Reflectance of top pixel
RB = Reflectance of bottom pixel
RR = Reflectance of resultant pixel

TT = Transmittance of top pixel
TB = Transmittance of bottom pixel
TR = Transmittance of resultant pixel

t

I Spatlal I n t e g r a t o r (100% T It.)i

t l

Figure 2 - Cross-Section of Two Level Merge
and Resultant Level

~ = ~ * ~

The following calculations arrive at
the solution for CR and RR in terms of the
known values CT,RT,TT,CB,RB,TB. Note that

256

Computer Graphics Volume 15, Number 3 August 1981

the term "BELOW" refers to whatever is
below the bottom pixel.

Color Contribution of Resultant =
(RR * CR) + (TR * BELOW),

which is =
(RT * CT) +
(TT * (RB * CB)) +
(TT * TB * BELOW)

where
(RT * CT)
represents Color Contribution of Top,

(TT * (RB * CB))
represents Color Contribution of Bottom,

(TT * TB * BELOW)
represents Color Contribution of Below,
(RR * CR)
represents Color Contribution of Resultant,

(TR * BELOW)
represents Color Contribution of Below.

Knowing that TR = TT * TB, the color
contribution from below can be subtracted
from both sides of the equation.
Substitutions for RR and TR are performed
since RR = 1 - TR and TR = TT * TB. Thus,
solving for CR and RR produces:

CR --
(CT * RT) + (TT * CB * RB)

1 - (TT * TB)

RR = 1 - (TT * TB)

The merging algorithm for the
order-independent method is subject to the
same three case conditionals as the
bottom-up method, each governed by the
opacity value of the top pixel. The first
two cases remain the same. Case 3 (partial
opacity) assumes the above formulas for CR
and RR for the resultant color and opacity
values.

Figure 8 offers a visualization of the
opacity mask for merging the cels from
Figures 4 and 5. Pure white areas
represent fully transparent pixels, while
areas of pure black represent fully opaque
pixels. The penumbre surrounding the
opaqued areas represents pixels of partial
opacity, producing soft, anti-aliased
edges. The final image created by using
this opacity mask to merge these cels with
the background is also pictured in Figure
8.

Transforming One Artwork Level

In addition to the task of merging
levels of artwork into a final image, it is
necessary to be able to manipulate each
level relative to the "camera's eye".
Zooming and panning are examples of
commonly used operations. Variations in
the intensity with which a level
contributes to the final image are also
necessary to simulate the effect of the
camera's aperture. Thus, there are two
general classes of transformations which

affect each level of either original or
merged artwork. The first class consists
of geometric transformations and the second
class consists of intensity
transformations. Geometric transformation
can be accomplished in several manners:

(i) A standard 4 X 4 transformation matrix
is constructed from scaling, translation,
rotation, and perspective information For
each pixel in the transformed image, an
inverse transformation is performed using
the 4 X 4 matrix. This determines the
location on the untransformed image from
which pixel information can be used for
sampling purposes. Methods of bilinear
interpolation and filtering are used to
calculate the final color of the
transformed pixel. Refer to a detailed
discussion by Levoy, Feibush, and Cook [4].

(2) Alternatively, the transformation can
be expressed as an x-pass and a y-pass.
Filtering is performed in only one
direction at a time. Such a two-pass
stream processor, introduced by Catmull and
Smith [2], has the same effect as the 4 X 4
transform above, but reduces the total
compute time required to transform a full
raster image.

Intensity transformation can be
accomplished by altering the opacity
component of each pixel by a given factor.
An intensity transform performed on one
level of artwork will either increase or
decrease the extent to which that level
contributes to the final raster image.

Assembling Composite Images

The basic method for merging any two
adjacent cels and transforming the
resultant image have been presented. It is
desirable to be able to specify to the
computer many cels and accompanying
transformations for automatic assembly of a
final composite image. For this reason, a
data structure which models any animation
camera configuration is necessary. There
are two components to consider when
devising a structural model for a physical
animation camera stand:

(i) Artwork - One level of artwork,
whether it be cel, background, or merged
resultant is the basic material unit upon
which the camera stand operates.

(2) Operations - For the purposes of
cartoon animation, a subset of all po~ible
geometric transforms will be used. A
linear intensity transform will also be
included in the model. Refer to Figure 3
(below).

ZOOM
(X & Y Scaling)

Zoom in ~Enla~ement)
! /,/

Zoom ou~ (Reduetlon)

257

Computer Graphics Volume 15, Number 3 August 1981

PAN
(X & Y Translation)

$

INTENSITY

/k

Figure 3 - Three types of operations
affecting artwork

A modified tree structure, such as the
one shown in Figure 10, is used to model
all camera set-ups. The three types of
nodes used in this structure are:

(i) Artwork (Original Scanned Image Data)
(2) Operation (Zoom, Pan, Intensity)
(3) Merge (Adjacent levels merged into

resultant level)

All original, scanned artwork resides
at the leaves of the tree. By traversing
toward the root, performing either a merge
or operation at each intermediate node, the
final frame is constructed. The traversal
can be seen as an expression evaluator
which uses three classes of nodes:
operands, unary operators, and binary
operators. The three types of
configuration nodes listed above fall into
these same three classes. The artwork is
the basic operand upon which all operations
are performed. A transform operation is a
unary operator, only performed on one level
of original or merged artwork. A merge is
a binary operator, requiring two levels as
input.

An intermediary image is kept at any
operation or merge node whose subtree does
not change over a predefined number of
frames. This means it is necessary to
build the subtree only once even if it is
used for subsequent frames. As it was
earlier stated, order-independent merging
allows such intermediary images to be
built. The configuration tree structure
presented here allows such frame-to-frame
coherencies to be recognized.

In addition to this cost saving
feature, new and elaborate camera
configurations can be modeled by
constructing the proper tree structure to
simulate the desired camera stand.
Configuration i, as illustrated in Figure
I0 produces a final merged image as
pictured in Figure ii. By slightly varying
the tree structure in Configuration 1 to
incorporate independent panning of the cels
of Example B (Figures 6 and 7),
Configuration 2 is created as shown in
Figure 12, and a final merged image is

produced, as pictured in Figure 13.

Improved Merging Methods

In typical cartoon animation, and
particularly in the case of limited
animation, three types of coherency can be
identified in the final frame assembly
process: coherency between frames, between
areas within each frame, and between pixels
within each area. Several algorithmic
approaches have been developed for taking
advantage of each type of coherency, thus
reducing the overall time, space, and logic
required to produce an animated sequence.

A. Frame-to-frame Coherence

In typical cartoon animation, some or
all artwork levels may change from one
frame to another. Those portions of the
configuration tree structure which do not
change may be kept for subsequent frames.
This greatly reduces the number of merges
and transform operations which must be
performed on each frame. In fact, it is
possible for entire frames to be kept and
used again for subsequent frames if no
animation occurs at these frames. One
example of this occurs when the animation
is drawn on "two's". This means new
drawings are only animated on every other
frame of the final sequence. Drawing on
two's is prevalent throughout traditional
cartoon animation as a method of reducing
the number of drawings by 50%.

All assembly information about the
frame-to-frame layout of an animated
sequence is contained within a tabular
exposure sheet. Each row on a sheet
contains information pertaining to the
construction of one frame, while each
column refers to one level of artwork. An
entry within a column on one row can assume
one of two states:

(i) Non-blank : Name of artwork.
(2) Blank : Assumes the default from

the first non-blank entry
above in the same column.

In order to achieve totally automatic
production on the computer, a sequence
database has been developed which makes
this information available to the computer.
A screen editor is used to enter and edit
all information concerning configuration
structures, names of artwork, and operation
parameters. A video terminal, such as a
DEC VTI00, simplifies this job by
disp]aying a facsimile of the physical
exposure sheet. A sample display from such
an editor is pictured in Figure 16.

Once all assembly information has been
entered into the sequence database using
the interactive exposure sheet editor, the
process of deciding in which order levels
should be merged and which merged levels
should be retained begins. A frame spread
spanning over a predefined number of frames

258

Computer Graphics Volume 15, Number 3 August 1981

starting at the frame currently being built
is examined for groupings of cels on
adjacent levels which remain unchanged.
These intermediary groupings are built
while assembling the current frame. A pool
of these intermediary images is maintained
by the computer, and before starting a new
frame, the work requirements are first
determined and any intermediary frames
available in the pool are used.

B. Area Coherence

In many cases, a character drawn for
cartoon animation is found to reside within
a small portion of the full screen area.
Generally, cartoon characters are drawn in
the center of the viewing area. For
limited animation, small details, such as
eyes or mouths, are drawn as a separate
level of artwork. Consequently, the
majority of the corresponding cel is
transparent. Only a small central portion
contains the artwork. Rather than work
with a full screen image for every level of
artwork, it is desirable to determine the
smallest containment area which surrounds
the artwork on each cel and to consider
only that area when merging or transforming
that cel. This further reduces the time
required to build a final frame.

A min-max boundary box which surrounds
the non-transparent artwork of a cel can be
determined from the original scanned
artwork. This can be achieved by manually
locating the four min-max boundaries on the
original full-screen scanned image. This
boundary search can also be accomplished
automatically in software by examining each
pixel of the original scanned data. A
third and faster method uses a hardware
image analyzer capable of sampling
intensity levels of pixels in a designated
rectangular area of the display. Figures
4, 5, 6, and 7 are examples of cels which
each have surrounding boundary boxes shown
against a 12 field animation grid for
reference.

The min-max boundaries of two cels to
be merged are used to construct a table
which describes how the two cels overlap
and specifies how they are to contribute to
the reshlting merged image. This table
will be referred to as the "result table"
of the two cels being merged together. The
min-max boundary box of the merged image is
assumed to be the minimum rectangular area
containing the union of the two cel
boundary boxes. By extending the
boundaries of both cels to the edges of the
boundary box of the merged image, nine
regions are defined. Each of these regions
corresponds to an entry in the result
table. Two graphical representations of
result tables are pictured in Figure 14.
Example A in this figure represents the
result table of the cel from Figure 5 prior
to merging on top of the cel from Figure 4.
Similarly, Example B represents the result
table of the cel from Figure 7 before

merging on top of cel from Figure 6. Each
entry in a result table refers to a
particular area in the merged image. An
entry contains the following information:

(i) Type of contribution toward
the merged image

a. BOTH cels
b. TOP cel only
c. BOTTOM cel only
d. NEITHER of the two cels

(2) X dimension of the area
(Number of pixels wide)

(3) Y dimension of the area
(Number of scanlines high)

The actual result table dimensioning
and entry values for Example B are pictured
in Figure 15.

The result table is used as a guide in
assembling the resultant merged image. The
merging algorithm outlined on page 10 need
only be executed in an area of the merged
image in which a contribution exists from
both cels. No other areas require actual
calculations.

C. Pixel Coherence

Since cels are comprised primarily of
large homogeneous areas, it is desirable to
maintain all cels in a run-length encoded
(RLE) format. On the average, a cel
consisting of anti-aliased lines, contains
approximately eight pixels to every encoded
run along a scanline. In order to take
advantage of this coherency, an algorithm
has been developed which allows cels to be
merged and transformed in RLE format,
reducing the time required to assemble a
final frame by as much as a factor of
eight.

The merging algorithm on page 10 can
be changed slightly to accommodate an
encoded run rather than a single pixel.
Figure 9 shows an enlarged area of the cel
from Figure 4, outlined by a white box on
the final merged image in Figure 8. The
top portion of the close-up figure is shown
as alternating black and white lines of
various lengths. This visual format is
used to "expose" the underlying RLE scheme.
A switch between white and black on any one
of these scanlines indicates the start of a
new encoded run. A run is stored as a
pixel counter, three color components
(RGB), and an opacity value. The algorithm
has been expressly designed such that the
merged image produced by merging two RLE
artwork levels together is also in RLE
format. All original, opaqued cels are
stored in RLE format and all resultant
levels are kept in this format during
merging and during transform operations .

The lateral position of a level of
artwork is described by the X and Y

259

Computer Graphics Volume 15, Number 3 August 1981

coordinates of the boundary box surrounding
the artwork. In order to perform
translation on a level these coordinates
are simply reset to the desired location.
Thus, no calculations on the image data are
required.

Typically, enlargement and reduction,
which are scaling operations, have been
performed in raster format by one of the
two geometric transformation methods
discussed earlier. Both zoom operations
can be performed directly on the RLE image
data by utilizing a two-pass scheme.
First, the image is scaled in the X
direction. The resulting stretched or
compressed image is then scaled in the Y
direction to produce the final scaled
image. Scaling may just as easily be
performed by fist scaling in Y and then in
X. This two-pass algorithm involves logic
which incorporates linear interpolation
between encoded runs along a scanline when
scaling in X, and between scanlines when
scaling in Y. Figures ii and 13 were
produced using RLE merging and zooming,
and, as expected, took a small fraction of
the time required to perform the same
operations on all pixels.

Lastly, in order to perform an
intensity operation on an RLE image, the
opacity component of each encoded run is
transformed by a given factor, as outlined
earlier.

Conclusion

The methods presented in this paper
have been implimented on a DEC VAX 11/780
computer and have produced images
acceptable for television broadcast.
Within the next decade many of these
methods will be designed into the hardware
of "smart" frame buffers. Not only do
these methods greatly reduce traditional
production time requirements, but they also
increase the image-making possibilities
available to cartoon animation.

References

[I] Catmull, Edwin, "A Hidden-Surface
Algorithm with Anti-Aliasing", Computer
Graphics, volume 12, number 3, August 1978.

[2] Catmull, Edwin, and Smith, Alvy Ray,
"3-D Transformation of Images in Scanline
Order", Computer Graphics, volume 14,
number 3, August 1980.

[3] Levoy, Marc, Computer-Assisted Cartoon
Animation, M.S. Thesis Cornell University,
August, 1978.

[4] Levoy, Marc, and Feibush, Eliot, and
Cook, Robert, "Synthetic Texturing Using
Digital Filters", Computer Graphics, volume
14, number 3, August 1980.

[5] Madsen, Roy, Animated Film: Concepts,
Methods, Uses, New York, Interland

Publishing Inc., 1969.

[6] Smith, Alvy Ray, "Tint Fill", Computer
Graphics, volume 13, number 2, August 1979.

[7] Stern, Garland, "SoftCel - An
Aplication of Raster Scan Graphics to
Conventional Cel Animation", Computer
Graphics, volume 13, number 2, August 1979.

Acknowledgements

The author wishes to thank Dr. Donald
Greenberg and Marc Levoy for their help and
discussion on numerous design approaches,
with special thanks to William Hanna whose
continual support has made all this work a
reality at the Hanna-Barbera Productions
studios in Hollywood, California.

Figure 4 - Example A , Cel 1

Figure 5 - Example A , Cel 2

260

Computer Graphics Volume 15, Number 3 August 1981

Figure 6 - Example B , Cel 1 Figure 7 - Example B , Cel 2

FINAL F~ME

Figure 9 - Close-up of RLE cel
showing encoding scheme

Figure 8 - Opacity Mask and
Final Merged Frame

Figure i0 - Tree structure
for Configuration 1

Figure ii - Final merged image

for Configuration 1

261

Computer Graphics Volume 15, Number 3 August 1981

FINAL FRAME

Figure 12 - Tree structure
for Configuration 2

1 ("~ 2 ~ 3 Area T_22_% X Y
I NEITH~ Y8 i~8
.o BOTTOM 13;4 138

L 3 NEITHER 7~ 138
1 24 TOP 18 I00
i~ --~ 5 BOTH 13;4 I00

4 5 6~'\ 6 TOP 74 lO0
7 TOP 18 144

.~ 8 TOP 134 14~
9 TOP 7~ 14~

7 8 ~-9

Figure 14 - Graphical layout of Result

tables for Examples A & B

Figure 15 - Result table for Example B

Figure 16 - Sample display from interactive

exposure sheet editor

26£

