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Abstract 

The task of assembling drawings and backgrounds together for each frame of 
an animated sequence has always been a tedious undertaking using conventional 
animation camera stands and has contributed to the high cost of animation 
production. In addition, the physical limitations that these camera stands 
place on the manipulation of the individual artwork levels restricts the total 
image-making possibilities afforded by traditional cartoon animation. Documents 
containing all frame assembly information must also be maintained. 

This paper presents several 
production of cartoon animation, 
overall quality. 

computer methods for assisting in the 
both to reduce expense and to improve the 

Merging is the process of combining levels of artwork into a final 
composite frame using digital computer graphics. The term "level" refers to a 
single painted drawing (cel) or background. A method for the simulation of any 
hypothetical animation camera set-up is introduced. A technique is presented 
for reducing the total number of merges by retaining merged groups consisting of 
individual levels which do not change over successive frames. Lastly, a 
sequence-editing system which controls precise definition of an animated 
sequence, is described. Also discussed is the actual method for merging any two 
adjacent levels and several computational and storage optimizations to speed the 
process. 

KEYWORDS: computer animation, computer graphics, merging, transformation 
COMPUTER REVIEWS CLASSIFICATION: 3.41, 8.2 

Introduction 

The production of cartoon animatio~ 
has always been a large-scale undertaking 
involving many man-hours of drawing, inking 
(or xeroxing), cel painting, background 
painting, and frame-by-frame film recording 
using an animation camera stand. The 
traditional cartoon animation process takes 
the following steps from the original 
storyboard to the finished product: 

(i) Cartoon characters are drawn in pencil 
on separate sheets of white paper. A new 
and different drawing is made each time a 
change is to occur in the appearance of 
that character. 
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(2) Backgrounds which illustrate the 
settings into which a character is placed 
are painted on cardboard sheets. 

~ 3) A tabular exposure shee t is written to 
irect the final assembly of cels and 

backgrounds and to specify how the camera 
stand should be configured for each frame. 

(4) Each pencil drawing is either traced 
in ink or xeroxed onto the face of a clear 
sheet of acetate known as a cel. At this 
point, only a black line drawing appears on 
an otherwise transparent sheet of acetate. 

(5) The various areas of each transparent 
cel which are to appear as color are 
painted with an opaque paint, similar to 
coloring inside the lines of a child's 
coloring book. The painting is done on the 
reverse side of.the cel so that none of the 
black lines on the face are obliterated. 

(6) Using the exposure sheet as a guide, 
the specified background and overlaying 
cel(s) are placed on the base of the camera 
stand. The lateral position of the base is 
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a~justed depending upon the desired 
position of the characters and the 
background. Generally, the cels and 
background can be moved independently. The 
camera is raised or lowered on its vertical 
support until the desired scaling of the 
combined image is achieved. It is not 
possible to enlarge levels of artwork 
independently without the use of an 
expensive multi-plane animation camera 
stand such as the one introduced by Walt 
Disney in 1936. The aperture on the camera 
lens can be varied depending upon the 
desired brightness of the frame. When 
these physical processes are complete, a 
single frame of animation is recorded onto 
film with the open and close of the camera 
shutter. 

A review of Madsen's book "Animated 
Fil~:Concepts,Methods,Uses" [5] is 
beneficial in understanding in greater 
detail how the traditional animation 
process operates. 

In recent years several 
computer-assisted cartoon animation systems 
have been developed, primarily for the 
purpose of quickening and improving various 
stages of the animation process. Two such 
systems, one at Cornell University and the 
other at New York Institute of Technology, 
along with several other installations, 
have shown cost savings and greater 
flexibility over traditional cartoon 
animation methods. 

In each of these systems, drawings are 
maintained either in vector format as 
streams of connected vertices, or in raster 
format as areas of pixel data. Advantages 
and disadvantages of the two approaches are 
discussed by Levoy [3]. This paper will 
assume the raster format in all further 
discussion. Methods for computer 
assistance in steps 4 - 6 of the animation 
process have been developed for each 
system. Brief descriptions of 
computer-assisted cel creation and coloring 
processes (steps 4 & 5) are followed by 
computer methods for assisting in the final 
camera work (step 6). 

A. Computer-Assistance in the Cel 
Coloring Process (Step 5) 

The time required for cel coloring has 
been reduced tenfold through the use of 
area flooding algorithms such as those 
introduced by Smith [6] and Levoy [3]. 
Such algorithms process the pixels of a 
raster image directly. An enclosed area of 
the image is quickly flooded with color 
simply by indicating one "seed" pixel 
within that area. Each color has an 
opacity value associated with it which 
refers to the extent with which that color 
obscures whatever is behind it. This value 
is used in the process of overlaying 
images, discussed later in this paper. 

Area flooding algorithms lay at the 

heart of all cel opaquing programs. 
Because of the great time savings such a 
program offers to the animation process, it 
has been the major inspiration for 
incorporating computers for production 
assistance. 

B. Computer-Assistance in the 
Drawing-to-Cel Process (Step 4) 

An opaquing program operates on raster 
data. This means the animators' drawings 
must be entered into the computer in pixel 
format to correctly interface with such a 
program. 

Typically, in a raster-based, 
computer-assisted animation system, a 
drawing is input as pixel data by using a 
video scanning camera connected to a 
digital frame buffer. One such 
implementation is discussed by Stern [7]. 
The contents of the frame buffer can be 
manipulated by an opaquing program, such as 
the one mentioned above. 

Much like the drawings, conventionally 
painted backgrounds can be input by 
scanning with the same type of video 
camera. Three separate passes are made 
using optical color filters (red, green, 
blue). Each pixel of the background image 
is stored as an RGB triplet. All pixels 
within a background are assumed to be fully 
opaque. 

C. Computer-Assistance in the 
Frame Assembly Process (Step 6) 

All of the computer-assisted processes 
discussed above deal with the alteration or 
creation of individual pieces of artwork. 
Traditionally, these levels have been 
assembled into a final composite frame on a 
standard animation camera stand. However, 
since cels and backgrounds are maintained 
in the computer in raster format, a method 
is necessary for performing the task of 
building the final frames of animation from 
the pixel data. 

Merging is the process of combining 
pixel-based artwork into a final display 
frame using digital computer graphics. 
Building a frame of animation on a 
traditional animation camera stand can be 
simulated on a computer. The pixel-based 
artwork is assembled and transformed into a 
final raster image. Methods for this 
simulation process will be the discussed in 
detail later in this paper. Once computed, 
the final image can either be written to a 
frame buffer and output onto videotape or 
recorded directly onto film using a 
precision film recorder. 

There are several advantages for using 
a computer to assist in this step of the 
animation process in this manner: 

(i) The allowable number of cel levels is 
no longer limited by the physical density 
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of the acetate on which it is normally 
painted. The bottom level of artwork in a 
computer merged frame is as bright as all 
the levels above it. 

(2) The physical limitations of the camera 
stand, which have restricted the 
independent manipulation of each artwork 
level, are no longer present. Levels may 
be transformed to simulate any hypothetical 
camera stand, including the multi-plane 
camera. 

Merging Two Artwork Levels 

A. Image Data (Artwork) 

The majority of artwork processed by 
computer consists of "cels" colored by an 
opaquing program. Backgrounds, input by 
the three-pass scanning method, previously 
discussed, comprise the remainder of raster 
data used in producing an animated 
sequence. Each pixel of an artwork level 
is comprised of three color components 
(Red, Green, Blue) and an opacity value. 
The opacity refers to the percentage 
contribution of the pixel's own color 
versus whatever artwork is on the next 
lower level. While all pixels in a 
background are fully opaque, pixels in cels 
assume one of three states: 

i) Fully Opaque: OPACITY(PIXEL)=I 

This occurs in all colored areas. 

2) Fully Transparent: OPACITY(PIXEL)=0 

This occurs in all areas void of color. 

3) Partially Opaque: 0 < OPACITY(PIXEL) < 1 

This occurs at the edges between opaque and 
adjacent transparent areas, producing soft, 
anti-aliased edges. 

B. The Merging Process 

Merging multiple levels of pixel-based 
artwork for cartoon animation can be 
thought of in terms of a Z-buffer 
algorithm. Typically, a Z-buffer algorithm 
is used for hidden surface removal of 
polygonal data. It determines what 
portions of each polygon are ultimately 
visible in the final raster display. A 
merging algorithm determines what portions 
of each level of artwork are ultimately 
visible in the final frame. Because a 
Z-buffer algorithm only considers each 
level once, an increase in the number of 
levels produces a linear increase in the 
time required to build a final display 
image. However, a Z-buffer algorithm can 
not offer one necessary feature desirable 
in a merging algorithm: acceptable 
anti-aliasing along edges. There are two 
cases where adverse effects can occur: 

(i) Catmull [i] has pointed out that 
Z-buffer algorithms do not produce 

correctly anti-aliased edges in a raster 
image. Only pixel percentage clipping, 
using precise edge information, generates 
the correct anti-aliasing of edges in all 
cases. Without the edge information, 
slightly incorrect results will occur when 
overlap occurs between two or more pixels 
through which edges pass. This occurs when 
combining levels of scanned data, because 
the scanning process does not yield precise 
edge information. Incorrect results are 
more noticeable in applications where a 
Z-buffer algorithm is typically used than 
in cartoon animation produced by a merging 

algorithm. In the case of polygonal data, 
many edges may overlap. Unfortunately, as 
the number of overlapping edges increases, 
so does the error. Since many of these 
images are animated slowly, such errors are 
easily detected. This is not true in 
cartoon animation. The number of edges 
that actually overlap are minimal since the 
number of artwork levels is much less than 
the number of overlapping polygons found in 
a typical image produced by a Z-buffer 
algorithm. More importantly, frame to 
frame motion in cartoon animation is 
typically quick and tends to hide slightly 
incorrect color at intersecting 
anti-aliased edges. For these reasons, the 
results, while not perfect, are more than 
adequate for cartoon animation. 

(2) It has also been pointed out that a 
Z-buffer algorithm will produce 
inconsistent results at the edges if the 
order in which levels are pairwise combined 
is not bottom-up. This is due to the fact 
that the calculations involved in the 
Z-buffer algorithm are not associative. 
The option of merging levels of artwork, 
independent of the order in which the 
merges occur, is desirable in a 
computer-assisted animation system. 
Frequently, groups of adjacent levels of 
artwork will not change from one frame to 
another. It would be advantageous to be 
able to merge these levels together and 
keep the resultant for use in subsequent 
frames. This reduces the total number of 
merges which have to be performed for an 
animated sequence. Due to the nature of 
the animation, the order by which groupings 
of adjacent levels are merged and retained 
may not necessarily be bottom-up. Thus, 
the need to be able to assemble the final 
image in any order becomes important. An 
order-independent merging method has been 
developed which does not require the strict 
bottom-up merging order by which levels are 
paired and merged into intermediary images. 
It eliminates this restriction, producing 
no adverse effects in the anti-aliased 
edges caused by variations in the order by 
which merges between levels occur. 

Before presenting the method for 
order-independent merging, the basic logic 
for a simple merging process must be 
presented. This closely parallels the 
logic used in a Z-buffer algorithm. Only 
two levels are merged at any one time, 
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forming a resultant level with its own 
color and opacity components, which can in 
turn be merged with any other existing 
level. The calculations for resultant 
pixels along the edges have been included. 
The formulations in the simple procesS rely 
upon order dependence for correct results. 
Levels are merged in order from the 
background upwards. Since the background 
is known to be fully opaque, the opacity of 
the pixel resulting from each merge 
operation is equal to I. Thus, a merge is 
always between a fully opaque bottom level 
and a top level assuming any of the three 
opacity states outlined previously. To 
produce the merged pixel, RESULT, from the 
two adjacent level pixels, TOP and BOTTOM, 
the following algorithm is performed: 

Case 1 if OPACITY(TOP) = 1 then 

COLOR(RESULT) = COLOR(TOP) 

If top is fully opaque 
result assumes top color 

else 
Case 2 if OPACITY(TOP) = 0 then 

COLOR(RESULT) = COLOR(BOTTOM) 

If top is transparent 
result assumes bottom color 

Case 3 else 

COLOR(RESULT) = 
{OPACITY(TOP) * COLOR (TOP)} + 
{{I - OPACITY(TOP)} * COLOR(BOTTOM)} 

If top is partially opaque 
result assumes interpolant 
between top and bottom colors 
regulated by the top opacity 

fi 

The term "COLOR" refers to one of the 
three color components found at the pixel, 
either red, green, or blue. The algorithm 
is executed once for each component. 

The bottom-up method always involves 
building an image which contains all 
artwork from the background up to and 
including some overlaying cel. In the case 
of order independence, the process of 
assembling a final raster image is 
mathematically associative. This is true, 
because the act of cummulatively combining 
levels of given color and opacity is an 
additive process. A physical model which 
has these same properties has been 
constructed to clarify the formulas 
necessary for calculating a resultant 
pixel's color and opacity values from the 
known color and opacity values of two cel 
pixels which are being merged together: 

A pixel can be thought of in terms of 
the physical analogy of a homogeneous 
screen of a given density. A given 
percentage of the area contributes the 

color of the screen material to the overall 
appearance of the screen. This percentage 
will be referred to as the "reflectance". 
The remaining percentage of the area is 
contributed from levels below. This will 
be referred to as the "tranmittance". 

t REFLECTANCE (% of plxel area oeaupled 
by the screen) 

x l "~" --:~-?~-'--"--~---;;~" 

~ ~  ~NsM~cE(~ofplx.l ..... t 
occupied by the--screen) 

REFLECTANCE = 1 - TRANSMITTANCE 
for 0 <= REFLECTANCE <= 1 

Figure 1 - Screen Model of Pixel 

The use of the terms "reflectance" and 
"transmittance" should not be mistaken for 
those found in discussions of optics and 
ray tracing. The two terms assist in 
conceptualizing the derivation of the final 
formulas. 

Overlaying any two pixels, each with 
its own opacity (or "reflectance") values, 
can be thought of as overlaying two screens 
of given density and color with a spatial 
integrator (diffuser) of 100% transmittance 
between them. A new interpolated color and 
resultant "reflectance" of this combination 
can be obtained from the original known 
densities and colors of the two screens. 

Using the following symbols, Figure 2 
aids in deriving formulas for calculating 
the resultant components: 

CT = Color value for top pixel 
CB = Color value for bottom pixel 
CR = Color value for resultant pixel 

RT = Reflectance of top pixel 
RB = Reflectance of bottom pixel 
RR = Reflectance of resultant pixel 

TT = Transmittance of top pixel 
TB = Transmittance of bottom pixel 
TR = Transmittance of resultant pixel 

t 

I Spatlal I n t e g r a t o r  (100% T ..... It. )i 

t l 

Figure 2 - Cross-Section of Two Level Merge 
and Resultant Level 

~ = ~ * ~  

The following calculations arrive at 
the solution for CR and RR in terms of the 
known values CT,RT,TT,CB,RB,TB. Note that 
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the term "BELOW" refers to whatever is 
below the bottom pixel. 

Color Contribution of Resultant = 
(RR * CR) + (TR * BELOW), 

which is = 
(RT * CT) + 
(TT * (RB * CB)) + 
(TT * TB * BELOW) 

where 
(RT * CT) 
represents Color Contribution of Top, 

(TT * (RB * CB)) 
represents Color Contribution of Bottom, 

(TT * TB * BELOW) 
represents Color Contribution of Below, 
(RR * CR) 
represents Color Contribution of Resultant, 

(TR * BELOW) 
represents Color Contribution of Below. 

Knowing that TR = TT * TB, the color 
contribution from below can be subtracted 
from both sides of the equation. 
Substitutions for RR and TR are performed 
since RR = 1 - TR and TR = TT * TB. Thus, 
solving for CR and RR produces: 

CR -- 
(CT * RT) + (TT * CB * RB) 

1 - (TT * TB) 

RR = 1 - (TT * TB) 

The merging algorithm for the 
order-independent method is subject to the 
same three case conditionals as the 
bottom-up method, each governed by the 
opacity value of the top pixel. The first 
two cases remain the same. Case 3 (partial 
opacity) assumes the above formulas for CR 
and RR for the resultant color and opacity 
values. 

Figure 8 offers a visualization of the 
opacity mask for merging the cels from 
Figures 4 and 5. Pure white areas 
represent fully transparent pixels, while 
areas of pure black represent fully opaque 
pixels. The penumbre surrounding the 
opaqued areas represents pixels of partial 
opacity, producing soft, anti-aliased 
edges. The final image created by using 
this opacity mask to merge these cels with 
the background is also pictured in Figure 
8. 

Transforming One Artwork Level 

In addition to the task of merging 
levels of artwork into a final image, it is 
necessary to be able to manipulate each 
level relative to the "camera's eye". 
Zooming and panning are examples of 
commonly used operations. Variations in 
the intensity with which a level 
contributes to the final image are also 
necessary to simulate the effect of the 
camera's aperture. Thus, there are two 
general classes of transformations which 

affect each level of either original or 
merged artwork. The first class consists 
of geometric transformations and the second 
class consists of intensity 
transformations. Geometric transformation 
can be accomplished in several manners: 

(i) A standard 4 X 4 transformation matrix 
is constructed from scaling, translation, 
rotation, and perspective information For 
each pixel in the transformed image, an 
inverse transformation is performed using 
the 4 X 4 matrix. This determines the 
location on the untransformed image from 
which pixel information can be used for 
sampling purposes. Methods of bilinear 
interpolation and filtering are used to 
calculate the final color of the 
transformed pixel. Refer to a detailed 
discussion by Levoy, Feibush, and Cook [4]. 

(2) Alternatively, the transformation can 
be expressed as an x-pass and a y-pass. 
Filtering is performed in only one 
direction at a time. Such a two-pass 
stream processor, introduced by Catmull and 
Smith [2], has the same effect as the 4 X 4 
transform above, but reduces the total 
compute time required to transform a full 
raster image. 

Intensity transformation can be 
accomplished by altering the opacity 
component of each pixel by a given factor. 
An intensity transform performed on one 
level of artwork will either increase or 
decrease the extent to which that level 
contributes to the final raster image. 

Assembling Composite Images 

The basic method for merging any two 
adjacent cels and transforming the 
resultant image have been presented. It is 
desirable to be able to specify to the 
computer many cels and accompanying 
transformations for automatic assembly of a 
final composite image. For this reason, a 
data structure which models any animation 
camera configuration is necessary. There 
are two components to consider when 
devising a structural model for a physical 
animation camera stand: 

(i) Artwork - One level of artwork, 
whether it be cel, background, or merged 
resultant is the basic material unit upon 
which the camera stand operates. 

(2) Operations - For the purposes of 
cartoon animation, a subset of all po~ible 
geometric transforms will be used. A 
linear intensity transform will also be 
included in the model. Refer to Figure 3 
(below). 

ZOOM 
(X & Y Scaling) 

Zoom in ~Enla~ement) 
! /,/ 

Zoom ou~ (Reduetlon) 
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PAN 
(X & Y Translation) 

$ 

INTENSITY 

/k 

Figure 3 - Three types of operations 
affecting artwork 

A modified tree structure, such as the 
one shown in Figure 10, is used to model 
all camera set-ups. The three types of 
nodes used in this structure are: 

(i) Artwork (Original Scanned Image Data) 
(2) Operation (Zoom, Pan, Intensity) 
(3) Merge (Adjacent levels merged into 

resultant level) 

All original, scanned artwork resides 
at the leaves of the tree. By traversing 
toward the root, performing either a merge 
or operation at each intermediate node, the 
final frame is constructed. The traversal 
can be seen as an expression evaluator 
which uses three classes of nodes: 
operands, unary operators, and binary 
operators. The three types of 
configuration nodes listed above fall into 
these same three classes. The artwork is 
the basic operand upon which all operations 
are performed. A transform operation is a 
unary operator, only performed on one level 
of original or merged artwork. A merge is 
a binary operator, requiring two levels as 
input. 

An intermediary image is kept at any 
operation or merge node whose subtree does 
not change over a predefined number of 
frames. This means it is necessary to 
build the subtree only once even if it is 
used for subsequent frames. As it was 
earlier stated, order-independent merging 
allows such intermediary images to be 
built. The configuration tree structure 
presented here allows such frame-to-frame 
coherencies to be recognized. 

In addition to this cost saving 
feature, new and elaborate camera 
configurations can be modeled by 
constructing the proper tree structure to 
simulate the desired camera stand. 
Configuration i, as illustrated in Figure 
I0 produces a final merged image as 
pictured in Figure ii. By slightly varying 
the tree structure in Configuration 1 to 
incorporate independent panning of the cels 
of Example B (Figures 6 and 7), 
Configuration 2 is created as shown in 
Figure 12, and a final merged image is 

produced, as pictured in Figure 13. 

Improved Merging Methods 

In typical cartoon animation, and 
particularly in the case of limited 
animation, three types of coherency can be 
identified in the final frame assembly 
process: coherency between frames, between 
areas within each frame, and between pixels 
within each area. Several algorithmic 
approaches have been developed for taking 
advantage of each type of coherency, thus 
reducing the overall time, space, and logic 
required to produce an animated sequence. 

A. Frame-to-frame Coherence 

In typical cartoon animation, some or 
all artwork levels may change from one 
frame to another. Those portions of the 
configuration tree structure which do not 
change may be kept for subsequent frames. 
This greatly reduces the number of merges 
and transform operations which must be 
performed on each frame. In fact, it is 
possible for entire frames to be kept and 
used again for subsequent frames if no 
animation occurs at these frames. One 
example of this occurs when the animation 
is drawn on "two's". This means new 
drawings are only animated on every other 
frame of the final sequence. Drawing on 
two's is prevalent throughout traditional 
cartoon animation as a method of reducing 
the number of drawings by 50%. 

All assembly information about the 
frame-to-frame layout of an animated 
sequence is contained within a tabular 
exposure sheet. Each row on a sheet 
contains information pertaining to the 
construction of one frame, while each 
column refers to one level of artwork. An 
entry within a column on one row can assume 
one of two states: 

(i) Non-blank : Name of artwork. 
(2) Blank : Assumes the default from 

the first non-blank entry 
above in the same column. 

In order to achieve totally automatic 
production on the computer, a sequence 
database has been developed which makes 
this information available to the computer. 
A screen editor is used to enter and edit 
all information concerning configuration 
structures, names of artwork, and operation 
parameters. A video terminal, such as a 
DEC VTI00, simplifies this job by 
disp]aying a facsimile of the physical 
exposure sheet. A sample display from such 
an editor is pictured in Figure 16. 

Once all assembly information has been 
entered into the sequence database using 
the interactive exposure sheet editor, the 
process of deciding in which order levels 
should be merged and which merged levels 
should be retained begins. A frame spread 
spanning over a predefined number of frames 

258 



Computer Graphics Volume 15, Number 3 August 1981 

starting at the frame currently being built 
is examined for groupings of cels on 
adjacent levels which remain unchanged. 
These intermediary groupings are built 
while assembling the current frame. A pool 
of these intermediary images is maintained 
by the computer, and before starting a new 
frame, the work requirements are first 
determined and any intermediary frames 
available in the pool are used. 

B. Area Coherence 

In many cases, a character drawn for 
cartoon animation is found to reside within 
a small portion of the full screen area. 
Generally, cartoon characters are drawn in 
the center of the viewing area. For 
limited animation, small details, such as 
eyes or mouths, are drawn as a separate 
level of artwork. Consequently, the 
majority of the corresponding cel is 
transparent. Only a small central portion 
contains the artwork. Rather than work 
with a full screen image for every level of 
artwork, it is desirable to determine the 
smallest containment area which surrounds 
the artwork on each cel and to consider 
only that area when merging or transforming 
that cel. This further reduces the time 
required to build a final frame. 

A min-max boundary box which surrounds 
the non-transparent artwork of a cel can be 
determined from the original scanned 
artwork. This can be achieved by manually 
locating the four min-max boundaries on the 
original full-screen scanned image. This 
boundary search can also be accomplished 
automatically in software by examining each 
pixel of the original scanned data. A 
third and faster method uses a hardware 
image analyzer capable of sampling 
intensity levels of pixels in a designated 
rectangular area of the display. Figures 
4, 5, 6, and 7 are examples of cels which 
each have surrounding boundary boxes shown 
against a 12 field animation grid for 
reference. 

The min-max boundaries of two cels to 
be merged are used to construct a table 
which describes how the two cels overlap 
and specifies how they are to contribute to 
the reshlting merged image. This table 
will be referred to as the "result table" 
of the two cels being merged together. The 
min-max boundary box of the merged image is 
assumed to be the minimum rectangular area 
containing the union of the two cel 
boundary boxes. By extending the 
boundaries of both cels to the edges of the 
boundary box of the merged image, nine 
regions are defined. Each of these regions 
corresponds to an entry in the result 
table. Two graphical representations of 
result tables are pictured in Figure 14. 
Example A in this figure represents the 
result table of the cel from Figure 5 prior 
to merging on top of the cel from Figure 4. 
Similarly, Example B represents the result 
table of the cel from Figure 7 before 

merging on top of cel from Figure 6. Each 
entry in a result table refers to a 
particular area in the merged image. An 
entry contains the following information: 

(i) Type of contribution toward 
the merged image 

a. BOTH cels 
b. TOP cel only 
c. BOTTOM cel only 
d. NEITHER of the two cels 

(2) X dimension of the area 
(Number of pixels wide) 

(3) Y dimension of the area 
(Number of scanlines high) 

The actual result table dimensioning 
and entry values for Example B are pictured 
in Figure 15. 

The result table is used as a guide in 
assembling the resultant merged image. The 
merging algorithm outlined on page 10 need 
only be executed in an area of the merged 
image in which a contribution exists from 
both cels. No other areas require actual 
calculations. 

C. Pixel Coherence 

Since cels are comprised primarily of 
large homogeneous areas, it is desirable to 
maintain all cels in a run-length encoded 
(RLE) format. On the average, a cel 
consisting of anti-aliased lines, contains 
approximately eight pixels to every encoded 
run along a scanline. In order to take 
advantage of this coherency, an algorithm 
has been developed which allows cels to be 
merged and transformed in RLE format, 
reducing the time required to assemble a 
final frame by as much as a factor of 
eight. 

The merging algorithm on page 10 can 
be changed slightly to accommodate an 
encoded run rather than a single pixel. 
Figure 9 shows an enlarged area of the cel 
from Figure 4, outlined by a white box on 
the final merged image in Figure 8. The 
top portion of the close-up figure is shown 
as alternating black and white lines of 
various lengths. This visual format is 
used to "expose" the underlying RLE scheme. 
A switch between white and black on any one 
of these scanlines indicates the start of a 
new encoded run. A run is stored as a 
pixel counter, three color components 
(RGB), and an opacity value. The algorithm 
has been expressly designed such that the 
merged image produced by merging two RLE 
artwork levels together is also in RLE 
format. All original, opaqued cels are 
stored in RLE format and all resultant 
levels are kept in this format during 
merging and during transform operations . 

The lateral position of a level of 
artwork is described by the X and Y 
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coordinates of the boundary box surrounding 
the artwork. In order to perform 
translation on a level these coordinates 
are simply reset to the desired location. 
Thus, no calculations on the image data are 
required. 

Typically, enlargement and reduction, 
which are scaling operations, have been 
performed in raster format by one of the 
two geometric transformation methods 
discussed earlier. Both zoom operations 
can be performed directly on the RLE image 
data by utilizing a two-pass scheme. 
First, the image is scaled in the X 
direction. The resulting stretched or 
compressed image is then scaled in the Y 
direction to produce the final scaled 
image. Scaling may just as easily be 
performed by fist scaling in Y and then in 
X. This two-pass algorithm involves logic 
which incorporates linear interpolation 
between encoded runs along a scanline when 
scaling in X, and between scanlines when 
scaling in Y. Figures ii and 13 were 
produced using RLE merging and zooming, 
and, as expected, took a small fraction of 
the time required to perform the same 
operations on all pixels. 

Lastly, in order to perform an 
intensity operation on an RLE image, the 
opacity component of each encoded run is 
transformed by a given factor, as outlined 
earlier. 

Conclusion 

The methods presented in this paper 
have been implimented on a DEC VAX 11/780 
computer and have produced images 
acceptable for television broadcast. 
Within the next decade many of these 
methods will be designed into the hardware 
of "smart" frame buffers. Not only do 
these methods greatly reduce traditional 
production time requirements, but they also 
increase the image-making possibilities 
available to cartoon animation. 
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Figure 4 - Example A , Cel 1 

Figure 5 - Example A , Cel 2 
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Figure 6 - Example B , Cel 1 Figure 7 - Example B , Cel 2 

FINAL F~ME 

Figure 9 - Close-up of RLE cel 
showing encoding scheme 

Figure 8 - Opacity Mask and 
Final Merged Frame 

Figure i0 - Tree structure 
for Configuration 1 

Figure ii - Final merged image 

for Configuration 1 
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FINAL FRAME 

Figure 12 - Tree structure 
for Configuration 2 

1 ("~ 2 ~ 3 Area T_22_% X Y 
I NEITH~ Y8 i~8 
.o BOTTOM 13;4 138 

L 3 NEITHER 7~ 138 
1 24 TOP 18 I00 
i~ --~ 5 BOTH 13;4 I00 

4 5 6~'\ 6 TOP 74 lO0 
7 TOP 18 144 

.~ 8 TOP 134 14~ 
9 TOP 7~ 14~ 

7 8 ~-9 

Figure 14 - Graphical layout of Result 

tables for Examples A & B 

Figure 15 - Result table for Example B 

Figure 16 - Sample display from interactive 

exposure sheet editor 
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